

The Tris(trifluoromethyl)methyl Phosphonium Ion, $P(CF_3)_3CH_3^+$, Preparation and Structure

Oleg Shyshkov,[†] Uwe Dieckbreder,[†] Thomas Drews,[‡] Alexander Kolomeitsev,[†] Gerd-Volker Röschenthaler,^{*,†} and Konrad Seppelt*,[‡]

[†]Institute of Inorganic & Physical Chemistry, University of Bremen, D-28334 Bremen, Germany, and [‡]Institut für Chemie der Freien Universität D-14195 Berlin, Germany

Received March 2, 2009

The P(CF₃)₃CH₃⁺ ion is synthesized as P(CF₃)₃CH₃⁺AsF₆⁻ by methylation in a MeF/SO₂/AsF₅ system or as P(CF₃)₃-CH₃⁺Sb₂F₁₁⁻ in a MeF/HF/SbF₅ system at low temperatures. In contrast to (CF₃)₃(CH₃)P⁺AsF₆⁻, P(CF₃)₃CH₃⁺-Sb₂F₁₁⁻ is a stable, colorless crystalline solid. A crystal structure determination shows the presence of a slightly distorted tetrahedral phosphonium cation with P-C(F) distances of 188.1–188.7(4) and a P-C(H) bond length of 176.7(4) pm. The phosphonium salt $(CF_3)_3(CH_3)P^+AsF_6^-$ was also obtained by abstraction of a fluoride ion from the anion $[(CF_3)_3(CH_3)PF_2]^-$ salt using AsF₅.

Introduction

Phosphorus(III) compounds are the most versatile ligands in transition metal complex chemistry. Even the weak electron donor PF₃ can act as a complex ligand.¹ PF₃ can be protonated only by one of the strongest Brönstedt acids, HF/SbF₅, to PF_3H^+ . The crystalline compound decomposes already below 0 °C loosing of PF₃.² Calculated proton affinities of PF₃ are the lowest of all considered phosphanes (676 kJ mol⁻¹;³ exptl, 695.3 kJ mol⁻¹)⁴ and P(CF₃)₃ (689 kJ mol⁻¹). The scarcity of the known P(CF₃)₃ metal complexes⁵ may also be interpreted in terms of very weak donor ability. In contrast to fluorine, the CF₃ group has no π -donor properties which could to some extent compensate its strong electron-withdrawing effect. Thus, stepwise introduction of a trifluoromethyl group into a phosphane molecule should result in a nucleophilicity and basicity decrease. As expected, trifluoromethyldimethylphosphine⁶ is easily methylated in methylen

*To whom correspondence should be addressed. E-mail: seppelt@ chemie.fu-berlin.de (K.S.).

chloride using methyl iodide/AgBF₄ (3 days) or methyl triflate at room temperature (30 min),⁷ whereas bis(trifluoromethyl) methyl phosphine⁸ is only methylated by methyl triflate at 100 °C for 24 h as a neat substance.⁹ Later, it was shown that PF₃ and P(CF₃)₃ act rather as Lewis acids than as Lewis bases, forming relatively stable phosphoranides^{10,11} which, contrary to PF_3H^+ , could be handled at room temperature.

The molecular structure of P(CF₃)₃ is known in detail,¹² but a systematic investigation of its chemical properties is not yet available, except that it reacts spontaneously with oxygen to form $O=P(OCF_3)_3$. $O=P(CF_3)_3$, although a known compound, is not formed in this way.¹³ Chlorination affords Cl_2P $(CF_3)_3$;¹⁴ fluorination with SF₄ affords F₂P(CF₃)₃.¹⁵

Experimental Section

Caution! Handling anhydrous HF or compounds that produce HF upon hydrolysis like AsF₅ or SbF₅ requires eye and skin protection.

All reactions not dealing with HF were carried out under an atmosphere of dry nitrogen. The glassware to be used was

⁽¹⁾ Kruck, T. Angew. Chem., Int. Ed. 1967, 6, 53-67.

^{(2) (}a) Küster, R.; Drews, T.; Seppelt, K. Inorg. Chem. 2000, 39, 2784-2786. (b) Minkwitz, R.; Liedke, A. Z. Naturforsch. 1989, 44b, 679.
(3) Senn, H. M.; Deubel, D. V.; Blöckl, P. E.; Togui, A.; Frenking, G.

THEOCHEM 2000, 506, 233-242.

⁽⁴⁾ Hunter, E. P. L.; Lias, S. J. Phys. Chem. Ref. Data 1998, 27, 413-656. (5) (a) Emeléus, H. J.; Smith, J. D. J. Chem. Soc. 1958, 572-8. (b) Burg, A. B.; Mahler, W. J. Am. Chem. Soc. 1958, 80, 2334. (c) Burg, A. B.; Sabherwal, I. H. Inorg. Chem. 1970, 9, 974–975. (d) Burg, A. B. Inorg. Chem. 1986, 25, 4751-4755. (e) Khokhryakov, K.; Maslenikov, I. G.; Grigorov, E. I.; Kukushin, Y. N. Zh. Obshch. Khim. 1985, 55, 2622. Khokhryakov, K.; Maslenikov, I. G.; Grigorov, E. I.; Kukushin, Y. N. Zh. Obshch. Khim. 1987, 106, 5138.

⁽⁶⁾ Haszeldine, R. N.; West, B. O. J. Chem. Soc. 1956, 3631.

⁽⁷⁾ Kolomeitsev, A. A.; Yagupolskij, Y. L.; Gentzsch, A.; Lork, E.; Röschenthaler, G.-V. Phosphorus, Sulfur Silicon 1994, 72, 179-184.

⁽⁸⁾ Haszeldine, R. N.; West, B. O. J. Chem. Soc. 1957, 3880-3883.

⁽⁹⁾ Dieckbreder, U.; Röschenthaler, G.-V.; Kolomeitsev, A. A. Heteroatom. Chem. 2002, 13, 650-653.

⁽¹⁰⁾ Christe, K. O.; Dixon, D. A.; Mercier, H. P. A.; Sanders, J. C. P.; Schroblingen, G. J.; Wilson, W. W. J. Am. Chem. Soc. 1994, 116, 2850-2858.

⁽¹¹⁾ Kolomeitsev, A. A.; Shyshkov, O. A.; Hoge, B.; Rozhenko, A. B.; Schoeller, W. W.; Wanczek, K. P.; Koppel, I.; Röschenthaler, G.-V. Unpublished results. Shyshkov, O. A. Ph.D. Thesis, University of Bremen, Bremen, Germany, 2006. http://nbn-resolving.de/urn:nbn:de: gbv:46-diss000105080 (accessed May 2009).

⁽¹²⁾ Marsden, C. J.; Bartell, L. S. Inorg. Chem. 1976, 15, 2713–2717.
(13) Mahler, W. Inorg. Chem. 1979, 18, 352–354.

⁽¹⁴⁾ Bennett, F. W.; Emeléus, H. J.; Haszeldine, R. N J. Chem. Soc. 1953, 1565

⁽¹⁵⁾ Mahler, W. Inorg. Chem. 1963, 2, 230.

usually kept overnight in a drying oven at 160 °C and then cooled in the flow of dry nitrogen. Reactions with gases were carried out using standard vacuum techniques in a system made of Pyrex glass and stopcocks lubricated with "Waker" medium-duty silicon grease; thick-walled round-bottom Pyrex tubes with Teflon stopcocks served as reaction vessels. Nonvolatile air and moisture-sensitive materials were handled in an inert atmosphere (glovebox "M. Braun Unilab 1200/780" with an integrated refrigerator and gas purifying unit).

All of the reactions with AsF₅ participation were carried out in SO₂, serving the role of a moderately coordinating solvent able to stabilize highly electrophilic phosphorus centers. A typical reaction vessel was a Pyrex NMR tube with a Teflon stopcock. Due to the instability of the compounds synthesized (when not stabilized by a solvent), the products were not isolated but were only characterized by multinuclear NMR spectrometry.

Handling of samples containing HF was performed using Teflon PFA ((poly)perfluorether-tetrafluoroethylene) tubes that are sealed at one end and equipped at the other end with a metal valve and thus are connectable to a stainless steel vacuum line. HF was dried through several trap-to-trap condensations and stored in a stainless steel tank over BiF₅. SbF₅ was purchased from Fluor Chem, United Kingdom, and distilled twice in a vacuum from room temperature to -40 °C. The resulting SbF₅ is highly viscous at room temperature and always kept in closed vessels. AsF5 was purchased from ABCR. P(CF₃)₃ is a highly flammable liquid with a low boiling point of 17 °C. It can explode in liquid state exposed to air, and the explosion may have quite a long induction time. $P(CF_3)_3$ is prepared according to ref 16. During its preparation from CF₃Br, the latter can initially mask ignition of the phosphane, so a very intensive flame may occur after disappearance of the main amount of CF₃Br. A very simple preparation from (CH₃)₃SiCF₃ and PCl₃ and CsF catalysis has also been tested.¹⁷ The resulting P(CF₃)₃ prepared by this method is always contaminated with 20-50%(CH₃)₃SiF. Separation of P(CF₃)₃ and (CH₃)₃SiF is almost impossible due to their similar physical data. CH₃F is from laboratory stock.

NMR spectra were recorded on a JEOL multinuclear instrument at 400 MHz for ¹H and a Bruker DPX-200 spectrometer operating at 200.13 MHz for ¹H, 50.32 MHz for ¹³C, 188.31 MHz for ¹⁹F, and 81.01 MHz for ³¹P. Spectra are recorded relative to $CFCl_3$ (¹⁹F) and H_3PO_4 (³¹P) as external standards. Raman spectra were recorded on a Bruker RFS 1005 instrument with ND-YAG laser excitation, $\lambda = 1064$ nm; IR spectra were recorded on a Bruker Vector 22 instrument.

Attempts to generate (CF₃)₃PH⁺. P(CF₃)₃ is condensed in a 2:1 molar solution of HF/SbF5 in a PFA tube at -196 °C. The mixture is warmed to -78 °C. The two components do not mix at this temperature, even after many days of storage. Slow warming results in dissolution of the $P(CF_3)_3$ under simultaneous formation of a voluminous colorless crystalline solid. At room temperature, all volatiles are in vacuo. The analysis by NMR shows that all $P(CF_3)_3$ has been converted to $P(CF_3)_3F_2$; for numerical data, see ref 14. The crystalline colorless solid is mostly SbF₃, as identified by its lattice constants.

 $P(CF_3)_3(CH_3)^+ AsF_6^-$. Method A. Attempts to methylate with methyltriflate failed. In 2.95 g (12.1 mmol) of AsF₅ in 30 g of dry SO₂ was condensed 0.44 g (13 mmol) of MeF. The mixture was warmed up to -30 °C and stirred at this temperature for 2 h. Afterward, 2.87 g (12.1 mmol) of (CF₃)₃P was condensed in the Shyshkov et al.

reaction mixture, which was stirred for 22 h at a temperature range of -30 to -10 °C. All volatiles were in vacuo in a high vacuum at -40 °C, leading to the formation of a white flaky precipitate which decomposed quickly above -30 °C. The yield is quantitative (NMR). (CF₃)₃(CH₃)PF¹⁹ has been isolated as one decomposition product in 89% yield.

one decomposition product in 89% yield. ¹⁹F NMR (SO₂): δ –50.36 (br.d., 9F, CF₃, ²J_{PF} = 125.48 Hz), –53.79 (br.s., [AsF₆]⁻ + AsF₅). ³¹P{¹H} NMR (SO₂): δ 42.38 (dec.). ³¹P NMR (SO₂): δ 42.38 (dec.q., ²J_{PH} = 16.33 Hz). ¹H NMR (SO₂): δ 3.73 (br.s., 12H, ⁺N(CH₃)₄), 3.92 (d. dec, 3H, P-CH₃, ⁴J_{HF} = 0.7 Hz). ¹³C{¹H} NMR (SO₂): δ 120.29 (d.q., CF₃, ¹J_{CF} = 321.72 Hz, ¹J_{PH} = 145.23 Hz), 14.47 (d., CH₃, ¹L = 110.5 Hz). NMR yield: cuentitative ${}^{1}J_{PC} = 119.5$ Hz). NMR yield: quantitative.

Method B. In 0.15 g (0.4 mmol) of $[(CF_3)_3(CH_3)PF_2]^-N$ $(CH_3)_4^{+\ 20}$ was condensed 0.96 g (20 mmol) of SO₂ and 0.12 g (0.7 mmol) AsF₅. The reaction mixture was warmed up to room temperature within 45 min. ¹⁹F NMR (SO₂): δ – 50.36 (br.d., 9F, CF₃, ${}^{2}J_{PF}$ =125.48 Hz), -53.79 (br.s., [AsF₆]⁻ + AsF₅). ${}^{31}P{}^{1}H{}$ NMR (SO₂): δ 42.38 (dec.). ${}^{31}P$ NMR (SO₂): δ 42.38 (dec.q., ${}^{2}J_{PH}$ =16.33 Hz). ${}^{1}H$ NMR (SO₂): δ 3.73 (br.s., 12H), 3.92 (br.d., 3H). ¹³C NMR (SO₂): δ 120.29 (d.q., *CF*₃, ¹*J*_{CF} = 321.72 Hz, ¹*J*_{PH} = 145.23 Hz), 14.47 (d., *CH*₃, ${}^{1}J_{\rm PC} = 119.5$ Hz). NMR yield: quantitatively.

 $P(CF_3)_3CH_3^+Sb_2F_{11}^-$. In a drybox, 1 g (4.6 mmol) of SbF₅ was put into an 8-mm-outer-diameter PFA tube. Using a metal vacuum line, subsequently, 10 mL of HF, 300 mg (0.49 mol) of P (CF₃)₃, and 700 mg (20.5 mol) of CF₃F were added. The tube was sealed and warmed to 40 °C. A colorless precipitate was formed.

Then, the tube was opened at 40°, and all excess CH₃F was pumped away at -78 °C along with some HF. The tube was sealed again and warmed to +40 °C, until all of the solid was dissolved. Recrystallization by slow cooling to 25 °C afforded 407 mg (66%) of colorless or sometimes slightly beige

[P(CF₃)₃CH₃]⁺Sb₂F₁₁⁻, mp (decomp.) = 110 °C. NMR (all in HF). ¹H: δ 2.77, ²J_{P-H} = 16 Hz. ¹⁹F: δ -52.78, ²J_{P-F} = 127 Hz, -125.26 (broad, Sb-F), -195.79 (HF). ³¹P: δ -42.70, ²J_{P-H} = 15-16 Hz, q, ²J_{P-F} = 127 Hz, decett. ¹³C{¹H}: δ 119.4, ¹J_{C-F} = 315 Hz, q, ¹J_{P-C} = 142 Hz; -2.70 ppm, $J_{\rm P-C} = 20$ Hz.

Raman spectrum (solid): 745(20), 660(80), 650(60), 606(15), 553(10), 482(10), 393(25), 279(40), 256(100), 229(15), 179(15), 120(20) cm⁻¹. IR spectrum (AgCl) solid): 2927(2), 2851(w), 1639 (w), 1203(w), 11253(w), 666(s), 445(m) cm⁻¹

A suitable crystal was selected and mounted on a Bruker Smart CCD 1000 TU diffractometer with the help of a special device.²¹ Mo Ka radiation, graphite, monochromator, a scan width of 0.3° in ω , and a measuring time of 10 s per frame were used. A total of 1800 frames were taken, thus covering a full sphere until $2\theta = 61^{\circ}$. Semiempirical absorption correction (SA-DABS) was used by equalizing symmetry-equivalent reflections. The structure is solved and refined by the ShelX programs.²² All atoms except hydrogen are refined anisotropically; hydrogen atoms are refined isotropically with a single displacement parameter for all three hydrogen atoms. Experimental details are collected in Table 1 and results in Table 2.

Results and Discussion

 $P(CF_3)_3$, in contrast to PF_3 , cannot be protonated by HF/SbF₅. At -78 °C, the two components do not even mix, and upon warming the mixture, even under very careful

⁽¹⁶⁾ Görg, M.; Röschenthaler, G.-V.; Kolomeitev, A. A. J. Fluorine Chem. 1996, 79, 103-104.

⁽¹⁷⁾ Murphy-Jolly, M. B.; Lewis, L. C.; Caffyn, A. J. M. J. Chem. Soc., Chem. Commun. 2005, 4479-4480.

⁽¹⁸⁾ Muetterties, E.; Mahler, W.; Schmutzler, R. Inorg. Chem. 1963, 2, 613-618

⁽¹⁹⁾ The, K. I.; Cavell, R. G. Inorg. Chem. 1977, 16, 2887–2894.
(20) Phosphoranide [(CF₃)₃PF]⁻ was methylated quantitatively at RT using methyl iodide to give the corresponding [(CF₃)₃P(CH₃)F₂]⁻, see ref 10. (21) Kottge, T.; Stahlke, D. J. J. Appl. Crystallogr. **1993**, 26, 615–619.

⁽²²⁾ Bartsch, H.; Henle, T.; Meier, R.; Mews Chem. Ber. 1988, 121, 451.

Table 1. Crystal Data and Structure Refinement for $[P(CF_3)_3CH_3]^+[Sb_2F_{11}]^-$

empirical formula	$C_4H_3F_{20}PSb_2$
fw	708.03
temp, K	173
space group	Pbca
a, pm	1352.2(2)
b, pm	1366.4(2)
c, pm	1759.7(3)
vol, 10^6 pj m ³	3251.2
Z	8
d (calcd) Mg/m ³	2.883
abs coeff, mm ⁻¹	3.62
cryst size	$0.03 \times 0.1 \times 0.2 \text{ mm}$
reflns	
measured	54777
independent	4979
params	255
final R indices $I \ge 4\sigma(I)$	R1 = 0.031
all data	R1 = 0.058
	wR2 = 0.073

Table 2. Selected Bond Lengths (pm) and Bond Angles (deg) for $[P(CF_3)_3CH_3]^+$ $[Sb_2F_{11}]$

1 2 11	
P-C(F)	188.1-188.7(4)
P-C(H)	176.7(4)
C-F	129.2-131.9(5)
С-Н	89-103 (5)
C(F)-P-C(F)	105.7-106.6(2)
C(H) - P - C(F)	111.9-113.4 (2)
Sb-F (terminal)	183.3-185.1(3)
Sb-F (bridge)	201.8, 202.7(3)
Sb-F-Sb	160.4(2)

control of the temperature, a redox reaction inevitably sets in $P(CF_3)_3F_2$ is formed quantitatively and is easily detected by its known ¹⁹F and ³¹P NMR spectra.¹⁴ It may be the loss of solvation or lattice energy of the larger $P(CF_3)_3H^+$ cation, as compared to the PF_3H^+ cation, that prevents protonation in condensed phases.

We failed to methylate $P(CF_3)_3$ using methyltriflate. We used the system MeF/SO₂/AsF₅ (methoxysulfinyl hexafluoroarsenate), which was successfully introduced for methylation of the extremely weak nucleophile NSF₃.²² Tris(trifluoromethyl)methylphosphonium hexafluoroarsenate, $P(CF_3)_3(CH_3)^+AsF_6^-$ was obtained in quantitative yield after the reaction of $P(CF_3)_3$ and $[MeOSO]^+AsF_6^-$ in SO₂ at -30 °C (Scheme 1).

The colorless salt proved to be very unstable and decomposed immediately at room temperature to give as one major

Figure 1. The structure of $P(CF_3)_3CH_3^+Sb_2F_{11}^-$ in the crystal. ORTEP representation, 50% probability plot. Shown is one molecular unit.

Scheme 1

Scheme 3

$$(CF_3)_3P + 2SbF_5 + CH_3F \xrightarrow{HF, -78^\circ C + RT} (CF_3)_3^+PCH_3 Sb_2F_{11}^+$$

product the phosphorane $(CF_3)_3(CH_3)PF$.¹⁹ However, it could be stored at -30 °C for some weeks without any decomposition. Due to the thermal instability, it was characterized only by multinuclear NMR spectroscopy methods.

The phosphonium salt $P(CF_3)_3(CH_3)^+AsF_6^-$ was also generated by abstraction of the fluoride ion from the $[(CF_3)_3(CH_3)PF_2]N(CH_3)_4$ salt (see Scheme 2). Both experiments established the high thermal stability of the phosphonium salt in SO₂. It was found that the NMR spectra did not change even after heating of the solution up to 50 °C. The stabilization effect may be caused by the solvating SO₂.

In contrast to the hexafluoroarsenate, $[(CF_3)_3CH_3P]^+$ -Sb₂F₁₁⁻ is a stable, colorless crystalline solid which was synthesized starting from (CF₃)₃P, SbF₅, and CH₃F (Scheme 3).

[(CF₃)₃CH₃P]⁺Sb₂F₁₁⁻ has been characterized by spectroscopic means, see the Experimental Section. Multiplicity and chemical shifts of the NMR spectra unequivocally prove again the qualitative structure of the P(CF₃)₃CH₃⁺ cation. The crystal structure (see Figure 1 and Table 2) offers more detail. The P–CF₃ bond lengths are longer than the P–CH₃ bond length, as is often observed in cases where CF₃ groups are not bonded to electron-rich centers. Typical examples are Ge(CH₃)₄, ν_{Ge-C} =194.5(3);²³ pm, Ge(CF₃)₄, 198.9(5) pm;²⁴ Sn(CH₃)₄, ν_{Sn-C} =214.4 pm;²⁵ Sn(CF₃)₄, 220.1(5) pm.²⁶ The CF₃–P–CF₃ angles are about 105° and are thus larger than in P(CF₃)₃ (97.2(7)°) but still smaller than the tetrahedral angle. This may be explained by the higher group electronegativity of CF₃ versus CH₃ and consequently a higher p character in the P–CF₃ bonds.

Acknowledgment. We thank the Fond der Chemischen Industrie for support of this work.

Supporting Information Available: Crystallographic data in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

(26) Eujen, R.; Oberhammer, H. J. Mol. Struct. 1981, 71, 109.

⁽²³⁾ Hencher, H. L.; Mustoe, F. J. Can. J. Chem. 1975, 53, 3542.

⁽²⁴⁾ Oberhammer, H.; Eujen, R. J. Mol. Struct. 1979, 51, 211. Oberhammer, H.; Eujen, R. J. Mol. Struct. 1979, 52, 310.

⁽²⁵⁾ Nagashima, M.; Fujii, H.; Kimura, M. Bull. Chem. Soc. Jpn. 1973, 46, 3708.